The Political Consequences of Alienation-Based and Indifference-Based Voter Abstention: Applications to Presidential Elections

James Adams
Associate Professor
Department of Political Science
University of California
Santa Barbara, CA 93106-9420
adams@polsci.ucsb.edu

Jay Dow
Associate Professor
Department of Political Science
University of Missouri
Columbia, MO 65211-0630
Dow@missouri.edu

Samuel Merrill, III
Professor
Department of Mathematics and Computer Science
Wilkes University
Wilkes-Barre, PA 18766
smerrill@wilkes.edu

Revised 8/5/05

The listing of authors is determined by alphabetical order; each contributed equally to the paper.
Abstract

We present a unified model of turnout and vote choice that incorporates two distinct motivations for citizens to abstain from voting: alienation from the candidates, and indifference between the candidates. The statistical model imposes an individual-level decision calculus such that the choice to abstain or turn out depends solely on the extent to which the citizen is alienated, indifferent or both. We impose this structure to better elucidate the micro-foundations of observed turnout behavior. We find that alienation and indifference both contributed substantially to the likelihood of abstention in the 1980 – 1988 U.S. presidential elections. We use the estimated model to address several questions including whether there is a partisan direction to changes in voter turnout rates, whether elections featuring candidates with attractive personal qualities motivate higher turnout, and whether changes in candidates’ policy platforms affect the likelihood of abstention. The statistical estimates suggest that there are few significant partisan effects associated with increased voter turnout. In addition, presidential elections involving attractive candidates motivate higher turnout, but only to the extent that abstention stems from alienation rather than from indifference. Finally, while citizens’ individual-level tendencies to abstain because of alienation were affected by their evaluations of the candidates’ policies, aggregate turnout rates did not depend significantly on the candidates’ policy platforms.
The study of voter participation has generated an enormous scholarly literature, both among empirically oriented researchers interested in voter turnout in real world elections and among formal theorists who study the implications of turnout rates for candidates’ and parties’ vote-seeking strategies. Despite this, relatively little is known about the theoretical and behavioral linkages between turnout and vote choice. We observe, for example, that those with weak partisan attachments are more likely to turn out in high profile elections and vote with the tide. Likewise, in American elections Republican identifiers are more likely to both turn out and to vote for their party’s candidate than are Democratic identifiers. However, the underlying behavioral foundations that might link these turnout and vote choices are not well understood. We study these linkages using a unified model of turnout and voter choice. The model captures the connected and reciprocal relationship between turnout and voter choice, and in doing so informs several important questions about elections. These include assessing the relative importance of policy and non-policy considerations in the calculus of voter turnout, whether elections featuring attractive candidates motivate higher turnout, and whether changes in turnout rates have partisan implications.

Unified turnout – vote choice models were developed by spatial modelers interested in whether the simultaneous consideration of the voter’s turnout decision and candidate choice alters vote-maximizing candidates’ policy strategies, compared with models of candidate choice alone (Riker and Ordeshook 1968, Hinich and Ordeshook 1970, Enelow and Hinich 1984). While our interest is related to these studies, it is conceptually distinct. Foremost is our goal to elucidate the linkage between these choices, and to trace their electoral implications. We do so by modeling citizen turnout and candidate choices in a manner that imposes a decision calculus that requires that abstention result from either alienation from the candidates, indifference be-
tween the candidates, or some combination of these two motivations. The decision rule is not predicated on spatial or ideological proximity alone. Rather, it is a function of the behavioral predictors most closely associated with observed voter turnout.

The following section presents the theoretical motivation for the model and describes how the decision calculus is implemented in our empirical specification. Whether our turnout-choice model is restrictive is an empirical question, but an advantage of imposing a well-defined behavioral calculus relating citizen turnout and vote choice decisions is that it allows one to more directly interpret observed behavior. This provides a more nuanced and precise view of the expressive and instrumental basis of voter turnout.

There are at least two additional reasons why it is useful to distinguish empirically between abstention from alienation and from indifference. First, this distinction may enhance our ability to forecast the electoral effects of changes in turnout rates. For instance, a widely researched question – one that has generated conflicting conclusions among political scientists – is whether there is a partisan direction to the vote.1 If different types of voters abstain for different reasons, say, for instance, that Democratic partisans tend to abstain from alienation whereas Republicans abstain from indifference, as suggested by Hinich (1978), then the effects of increases in voter turnout on the electoral fortunes of the two parties depends on whether the increase stems from changes in citizen alienation or citizen indifference.

Second, normative political theory stresses the intrinsic value of participation, and distinguishing between alienation-based and indifference-based abstention may help forecast how changes in important political variables – such as citizens’ evaluations of the candidates’ personal qualities (competence, integrity, etc.) or whether competing candidates offer citizens mean-

---

ingful policy alternatives – affects overall voter turnout. Several studies explore whether elections involving attractive candidates motivate higher turnout (Brody and Page 1973, Hinich 1978, Weisberg and Grofman 1981), while scholars as diverse as Downs (1957), Schattschneider (1960), and Piven and Cloward (1988) argue that tweedledum-tweedledee politics depress turnout. Our expectations about the turnout effects associated with citizens’ candidate evaluations may depend on whether abstention is driven primarily by alienation or by indifference.

We estimate a unified model of turnout and voter choice in the 1980 – 1988 U.S. presidential elections. We study these elections because they are the most recent elections in which the American National Election Studies validated reported voter turnout. Given our interest in the relationship between turnout and voter choice, we think it is essential to have as much confidence in our dependent variables as possible. We use the estimated models to determine the proportion of the electorate in each election that abstained from alienation and the proportion that abstained from indifference. We also perform simulations on the data to gauge whether voter turnout affected the results of these elections, and how both individual-level turnout and aggregate turnout would have responded to changes in voters’ evaluations of the candidates’ personal qualities, and to shifts in candidates’ policies.

We use the estimated models to answer several questions suggested by the considerations discussed above. These include determining the extent to which alienation and indifference con-

---

2 We have, however, estimated this model for the 1996 and 2000 election cycles. These results are consistent with those reported in the present study and reported in Adams, Merrill and Grofman (2005). We do not estimate the model for the 1992 presidential election because of Ross Perot’s non-trivial vote share. The decision calculus presented in the following section is defined for two candidates, and extending it to three candidates is significantly more complex. Since viable third candidates are not common in US elections, we limit our application to two candidate elections as more general cases are unlikely to greatly enhance our knowledge of citizen turnout and vote choice in US elections.
tributed to voter abstention in the 1980-1988 presidential elections. In addition, we also ask whether the candidate preferences of citizens who abstained from alienation differed significantly from the candidate preferences of those who abstained from indifference, whether enhancing respondents’ evaluations of both candidates’ characters significantly decreases respondents’ tendencies to abstain from alienation but not from indifference, and whether citizens’ tendencies to abstain from alienation and indifference were significantly related to their perceived policy distances from the candidates. Finally, we ask whether realistic changes in citizens’ perceptions of the candidates’ policy positions would have significantly changed aggregate voter turnout.

1. A Unified Model of Turnout and the Vote: Abstention from Alienation and Abstention from Indifference

Our theoretical approach is related to that underlying spatial models combining the turnout and vote choices, but it is conceptually distinct. Spatial modelers use unified turnout and vote choice models to determine optimal candidate positioning with endogenous voter participation. Our focus is on modeling the citizen decision calculus itself. We do so by imposing a decision rule that requires that the choice to abstain result from alienation from the candidates, indifference between the candidates, or a combination of these two motivations. In its spatial manifestation, abstention from alienation means the voter is too ideologically distant from his or her preferred candidate to justify the cost of voting, and abstention from indifference means that the ideological distance between candidates is insufficient to justify the cost of voting. Our approach reflects this intuition, but the decision calculus is such that the

---

3 The logic underlying this question is that, because abstention from alienation turns on the absolute level of citizens’ candidate evaluations, attractive candidates should motivate higher turnout; however abstention from indifference turns on citizens’ comparative evaluations of the competing candidates, and this differential is the same whether citizens evaluate both candidates positively or negatively.
behavioral underpinning driving alienation and indifference derive from more general predictors of turnout and voter choice.

The advantage of imposing a formal decision calculus is that it makes observed turnout choices more theoretically interpretable. Models that simply treat the choice to abstain as an alternative on par with vote choice for a given candidate capture the covariates that predict the likelihood of voting, but do not directly inform how these enter citizen decision making. Our model does this by requiring that abstention result from some well defined combination of these micro-foundations. While this strategy risks some loss of generality -- citizen abstention and turnout may result from sources other than alienation and indifference -- these are the two behavioral foundations most often used to describe the bases for abstention and turnout (Brody and Page 1973).

We derive the unified turnout and vote choice model by building on a specification proposed by Sanders (1998, 2001) that also reflects elements of a similar model estimated by Lacy and Burden (1999). Sanders derives a unified choice model that imposes the assumption that abstention results from voter indifference between the candidates. While Lacy and Burden do not specifically present a decision calculus, their model implicitly assumes that abstention results from alienation from the candidates. Our model builds directly on the Sanders’ specification, but extends it by distinguishing these two bases for citizen abstention.

We begin by assuming that citizens have preferences defined over three alternative behaviors on Election Day: abstaining from voting, or voting for one of two candidates. Let $U_i(D)$ and $U_i(R)$ denote citizen $i$’s utility for two candidates, $D$ and $R$ respectively. Let $T_i(A)$ denote the citizen’s alienation threshold. The alienation threshold is an estimated value such that if it exceeds the citizen’s candidate utilities he abstains. Similarly, let $T_i(I)$
denote a non-negative indifference threshold such that if its value exceeds the citizen’s utility differential between his preferred candidate and the rival candidate, he abstains. A citizen votes if he is neither alienated nor indifferent.

Translating these principles to decision rules is relatively straightforward.

If \( [U_i(D) - U_i(R)] \geq T_i(I) \) and \( U_i(D) \geq T_i(A) \), the citizen votes for candidate \( D \).

If \( [U_i(R) - U_i(D)] \geq T_i(I) \) and \( U_i(R) \geq T_i(A) \), the citizen votes for candidate \( R \).

If \( [U_i(D) - U_i(R)] < T_i(I) \) and/or \( \max[U_i(D), U_i(R)] < T_i(A) \), then the citizen abstains.

In words, a citizen votes for a given candidate if and only if he prefers the candidate to the other candidate, his utility difference between his preferred candidate and the other candidate exceeds his indifference threshold, and his utility for his most preferred candidate exceeds his alienation threshold.

Deriving an estimable choice model with desirable statistical properties from these decision rules is more complex. The mathematics, however, leads to a unified indifference and alienation (IA) statistical model that is an extension of well-known logistic specifications. The model contains four equations, one for each of the candidate utilities and two for the alienation and indifference thresholds. In the standard notation, voter \( i \)'s utility for candidate \( j \) may be written as:

\[ U_i(D) \geq U_i(R) \]

\[ U_i(D) - U_i(R) \geq T_i(I) \]

\[ U_i(D) \geq T_i(A) \]

\[ U_i(R) \geq T_i(A) \]

\[ U_i(D) - U_i(R) < T_i(I) \]

\[ \max[U_i(D), U_i(R)] < T_i(A) \]

\[ \text{Note that given that we have specified that } T_i(I) \text{ is non-negative, } [U_i(D) - U_i(R)] \geq T_i(I) \text{ implies that } U_i(D) \geq U_i(R). \]
\[ U_i(j) = \beta_j X_{ij} + \alpha_j V_{ij} + \varepsilon_{ij} \]
\[ = Z_i(j) + \varepsilon_{ij} \]  

where \( X_{ij} \) is a vector of candidate attributes as perceived by voter \( i \), \( V_{ij} \) is a vector of the voter’s evaluation of candidate \( j \) on policy issues, and \( \varepsilon_{ij} \) is a random disturbance term. The quantities \( \beta_j \) and \( \alpha_j \) are vectors of parameters to be estimated along with their standard errors. \( Z_i(j) \) simply summarizes the measured component of voter \( i \)’s candidate evaluation.

The voter’s alienation threshold may be described similarly,

\[ T_i(A) = \beta_i A_i + \varepsilon_{iA} \]
\[ = Z_i(A) + \varepsilon_{iA} \]

where \( A_i \) is a vector of variables expected to influence whether the voter will turn out on Election Day. Again, we seek to estimate the vector of parameters \( \beta_i \) and its standard errors.

The indifference threshold is written a bit differently. Specifically,

\[ T_i(I) = \exp(\beta_i I_i) \]
\[ = Z_i(I) \]

where \( I_i \) is also a vector of voter attributes expected to influence the likelihood that the voter will turn out on Election Day and the \( \beta_i \) are parameters to be estimated. Note that the definition in equation (3) constrains \( T_i(I) \) to be positive. We impose this constraint because a negative indifference threshold is logically impossible, because this threshold is associated with the voter’s utility differential between her preferred candidate and the rival candidate which by definition is
non-negative. The indifference threshold also does not contain an error term. This is because the indifference threshold enters the logistic model in a multiplicative manner through the candidate utilities. Effectively, the error term for the indifference threshold comes from the voter-candidate utilities (see equation 5 below). The indifference threshold coefficient vector $\beta_i$ and its standard errors are estimable. We label the model specified by equations 1-3 the unified indifference-alienation (IA) model.

Assuming that the utility errors are distributed type-1 extreme value, the likelihood function may be written as:

\[
P_i(D) = \frac{\exp(Z_i(D))}{\exp(Z_i(D)) + \exp(Z_i(R)) \times \exp(Z_i(I)) + \exp(Z_i(A))}
\]

\[
P_i(R) = \frac{\exp(Z_i(R))}{\exp(Z_i(D)) \times \exp(Z_i(I)) + \exp(Z_i(R)) + \exp(Z_i(A))}
\]

\[
P_i(\text{Abstain}) = 1 - P_i(D) - P_i(R)
\]

\[
\text{Log-likelihood} = \sum \ln \left[ P_i(D) \times \text{votedem} + P_i(R) \times \text{voterep} + P_i(\text{Abstain}) \times \text{abstain} \right]
\]

where \text{votedem}, \text{voterep}, and \text{abstain} are binary variables indicating whether the $i^{th}$ respondent voted Democratic, voted Republican, or abstained.\(^5\) The log-likelihood function is maximized

\(^5\)An important feature of the model is that, although the errors assume independence, the model does not impose the independence of irrelevant alternatives (IIA) property. This is because the denominators for the choice probabilities differ. Thus, removing an alternative changes the relative odds of the remaining choices (Sanders 1998, p. 93).
with respect to the utilities and threshold parameters. It returns estimates of the coefficient vectors and their standard errors that have the desirable statistical properties of maximum likelihood estimation.


We proceed by estimating the unified IA specification for the 1980-1988 ANES respondents. Our dependent variable is the respondent’s choice among three alternatives in the presidential election: vote Democratic, vote Republican, or abstain. Our predictor variables in the candidate utilities, the alienation threshold and the indifference threshold are those the literatures most commonly associate with vote choice and turnout, respectively. Beginning with voter choice, we model citizens’ utilities for the candidates as a function of party identification, which is scored at 1 if the respondent identified with the candidate’s party or at zero otherwise; ideological distance to each candidate, which is measured as the squared distance between the respondent’s liberal-conservative self-placement and the candidate’s (mean perceived) ideological position; policy distance to each candidate, which is measured as the mean squared distance between the respondent’s self-placements and the candidate’s (mean perceived) positions along the policy scales included in the study; respondent assessment of candidate character, which is calculated as the average score the respondent assigned to the candidate on attributes such as intelligence, honesty, and leadership ability; race, which is scored at 1 if the respondent is black or at zero otherwise; and retrospective evaluations of the national economy, coded from –2 (much worse) to 2 (much better). These variables have been found to influence voters’ candidate preferences in prior studies of voting in presidential elections (Alvarez and Nagler 1995, 1998).

We model citizens’ alienation and indifference thresholds as a function of several recognized predictors of turnout in US presidential elections. These include respondent education,
race, political efficacy and prior voting habits. Since the behavioral literature does not generally
distinguish abstention from alienation from abstention from indifference, we do not have strong
theoretical or empirical prior beliefs about which turnout predictors pertain to the alienation
threshold, which pertain to the indifference threshold, and which pertain to both thresholds.
Consequently, we include all predictors of turnout in both thresholds. The exception to this is
respondent perception of the closeness of the election. Several studies have shown that close
elections, at the margins, tend to have higher turnout (Munger and Cox 1989, see Endersby, Ga-
latas and Rackaway 2002 for a review.). We include this variable in the indifference threshold
on the assumption that its most direct effect will be felt in the calculus involving differences in
the utilities for the two candidates.\(^6\) Among variables in the alienation and indifference thresh-
olds \textit{education} is coded on a seven-point scale ranging from less than high school education to
post baccalaureate degree; \textit{political efficacy}, is calculated as the citizen’s mean self-placement on
the ANES political efficacy scales (recoded on a scale from 0 to 1 representing low to high effi-
cacy); \textit{previous vote}, is scored at 1 if the respondent reported having voted in the previous presi-
dential election and at zero otherwise; \textit{perceived election closeness} is scored at 1 if the respon-
dent believed the presidential election would be close and at zero otherwise.

The following equations display the resulting specifications for the respondents’ candi-
date utilities, their alienation thresholds, and their indifference thresholds. The \(D\) and \(R\) designa-
tors refer to the Democratic and Republican candidates respectively:

\(^6\) Our logic for this specification is that election closeness is a proxy for the respondent’s perception of the likelihood
of casting a decisive ballot, which is relevant to the instrumental decision to abstain from indifference but not to the
expressive decision to abstain from alienation.
\[ U_i(D) = b_1(Dem \ PID) + b_2(\text{squared ideological distance between } i \text{ and } D) \]
\[ \quad + b_3(\text{mean squared policy distance between } i \text{ and } D) + b_4(D. \ character) \]
\[ \quad + b_5(\text{retrospective economy}) + b_6(\text{race}) + \varepsilon_{iD} \]
\[ = Z_i(D) + \varepsilon_{iD} \]

\[ U_i(R) = b_7 + b_1(Rep \ PID) + b_2(\text{squared ideological distance between } i \text{ and } R) \]
\[ \quad + b_3(\text{mean squared policy distance between } i \text{ and } R) + b_4(R. \ character) \]
\[ \quad + b_8(\text{retrospective economy}) + \varepsilon_{iR} \]
\[ = Z_i(R) + \varepsilon_{iR} \]

\[ T_i(A) = b_9 + b_{10}(\text{race}) + b_{11}(\text{efficacy}) + b_{12}(\text{previous vote}) + b_{13}(\text{education}) + \varepsilon_{iA} \]
\[ = Z_i(A) + \varepsilon_{iA} \]

\[ T_i(I) = \exp[b_{14} + b_{15}(\text{race}) + b_{16}(\text{efficacy}) + b_{17}(\text{previous vote}) + b_{18}(\text{education}) \]
\[ \quad + b_{19}(\text{perceived election closeness})] \]
\[ = Z_i(I) . \]

Note that we constrain the coefficients for partisanship, ideology, policies, and character (coefficients \(b_1-b_4\)) to be equal across candidates. This imposes the assumption that these variables are equally salient with respect to respondents’ evaluations of each candidate. For example, the ef-
fect of Democratic partisanship on one’s utility for a Democratic candidate is assumed to be the same as Republican partisanship on one’s utility for a Republican candidate.\textsuperscript{7}

Table 1 reports the estimated parameters and their standard errors for the unified turnout – vote choice model for the 1980 - 1984 - 1988 elections.\textsuperscript{8} For each election, the coefficients relating to partisanship, policy distances, and candidate character in column 1 are statistically significant at the .01 level and show the expected signs, with respondents’ utilities for the candidates increasing when they identify with the candidate’s party, when they evaluate the candidate’s character positively, and when they share the candidate’s policy positions. Blacks consistently favor the Democratic candidate, and, consistent with previous research, voters holding positive impressions of the national economy tend to favor the incumbent candidate (Fiorina 1981, Alvarez and Nagler 1995).\textsuperscript{9}

\[\text{TABLE 1 ABOUT HERE}\]

With respect to respondents’ turnout decisions, the coefficients reported in columns 2-3 suggest that blacks abstain disproportionately from alienation, and that high levels of political efficacy reduce the likelihood that voters abstain from indifference. The negative values for the previous vote variable indicate that, as expected, respondents who reported voting in the previous election are more likely to vote in the current election.

\textsuperscript{7} Estimation of the model without these constraints revealed no substantive differences in the parameter estimates. We retain the parameter constraints because they simplify presentation and interpretation of the estimated coefficients and simulations.

\textsuperscript{8} The previous vote variable was not included in the 1984 ANES and hence is omitted for this election. We implement the log-likelihood function in a STATA ado file, and estimate its parameters using the method of maximum likelihood. In each of the three elections, the likelihood function maximized without difficulty. A copy of the computer code necessary to implement the log-likelihood function is available from the authors on request.
ous election are less likely to abstain at the current election (from either indifference or alienation). However, after controlling for previous election turnout and political efficacy, we obtain no systematic relationship between abstention and respondents’ educational levels or their expectations of a close election.

3. Alienation and Indifference in Presidential Elections

To estimate the relative contributions of indifference and alienation to the likelihood of abstention in the 1980-84-88 elections we use the Table 1 parameter estimates to compute the relative contribution of alienation and indifference to the aggregate likelihood of abstention. Specifically, for each respondent we calculate the probability that he or she was indifferent between the candidates but was not alienated from them; the probability that he or she was alienated but not indifferent; and the probability that he or she was both alienated and indifferent. We then use the means of these predicted probabilities to compute, for each election, the proportions of the electorate that fall into each category.10

As a diagnostic of model fit, we use the coefficients in Table 1 to predict the probabilities that each respondent voted for the Democratic candidate, voted Republican, or abstained. Using the mean values of each variable as the expected outcome, these accurately reproduce the corresponding raw frequencies in the ANES surveys.

From the estimated parameters, one may calculate the probability $P_i(A)$ that a citizen $i$ is alienated from the candidates as:

$$P_i(A) = \frac{\exp(Z_i(A))}{\exp(Z_i(D)) + \exp(Z_i(R)) + \exp(Z_i(A))}$$

and the probability $P_i(I)$ that $i$ is indifferent between the candidates as:

$$P_i(I) = 1 - \left[ \frac{\exp(Z_i(D))}{\exp(Z_i(D)) + \exp[Z_i(R) + Z_i(I)]} + \frac{\exp(Z_i(R))}{\exp(Z_i(R)) + \exp[Z_i(D) + Z_i(I)]} \right].$$

Using these probabilities along with the vote probabilities from the maximized likelihood, we obtain the probability $P_i(A \text{ not } I) = P(\text{abstain}) - P_i(I)$ that the respondent is alienated but not indifferent, the probability
Table 2A reports these predicted probabilities, which provide estimates of the relative contributions of alienation and indifference to voter abstention. These estimates suggest that both alienation and indifference depressed turnout in the 1980-84-88 elections, with alienation contributing slightly more than indifference to voter abstention. Our estimates of the proportion of NES respondents who abstained from alienation vary only between 18 and 21 percent for these elections; the estimated proportion of respondents who abstained from indifference varies only between 13 and 14 percent; the proportion that are projected to be both alienated and indifferent varies between 11 and 18 percent. These results suggest that both alienation and indifference contribute significantly to voter abstention in contemporary U.S. presidential elections.

In Table 2B we report whether citizens who abstain from alienation differ in their candidate preferences from those who abstain from indifference. Here we compare the computed probabilities that Democratic and Republican partisans were alienated, the probabilities that they were indifferent, and their overall probabilities of abstaining from either alienation or indifference. For comparison purposes we also report projected abstention rates for independent voters. Two important conclusions emerge from these calculations. First, Democrats and Republicans do not differ dramatically in terms of their predicted probabilities of abstaining (whether from alienation or indifference). Consistent with Highton and Wolfinger’s (2001) analysis of the 1992 and 1996 ANES data, Democratic respondents were slightly more likely to abstain than were Republicans. The figures in Table 2B also show that Democratic and Republican identifiers do not differ significantly in their reasons for abstention. In each election Democratic partisans are

\[
P_i(I \text{ not } A) = P(\text{abstain}) - P_i(A) \quad \text{that the respondent is indifferent but not alienated, and the probability}
\]

\[
P_i(A \text{ and } I) = P(\text{abstain}) - P_i(A \text{ not } I) - P_i(I \text{ not } A) \quad \text{that the respondent is indifferent and alienated,}
\]

where the probability \( P(\text{abstain}) \) that the voter abstains is given in equation 4 above.
slightly more likely to be both alienated and indifferent than are Republicans, and hence slightly more likely to abstain.

TABLES 2A and 2B ABOUT HERE

The simulations suggest that increases in voter turnout are unlikely to have significant partisan implications for election outcomes, regardless of whether increased turnout stems from reductions in indifference, in alienation, or in both. To confirm this conclusion we simulated the effects of increasing voter turnout under three scenarios: (a) no abstention from alienation, (b) no abstention from indifference, and (c) a “full-turnout” scenario with no abstention due to either alienation or indifference.11 These results are reported in Table 3 and reveal that the two sources of abstention have similar effects upon election outcomes, and that in each election increases in turnout would have only modestly benefited the Democratic candidate. Even under an unrealistic full-turnout scenario the Democratic candidate’s electoral gains are only of the order of a couple of percentage points.

TABLE 3 ABOUT HERE

We next ask whether the presidential candidates’ images as measured by citizens’ evaluations of candidates’ personal characteristics such as honesty, intelligence, and integrity affect the two bases for voter abstention similarly. We evaluate this question by calculating, for each election, the likelihood that ANES respondents would abstain because of alienation and indifference under three different “candidate image” scenarios: a “neutral” scenario, in which respondents’ candidate character ratings (scaled from −1 to +1) were fixed at the values recorded in the ANES studies; an “unpopular candidate” scenario, in which each respondent’s rating of each candidate was reduced by 0.15; and a “popular candidate” scenario, in which respondents’ ratings of each

---

11 These scenarios were specified by adjusting the alienation and indifference thresholds.
candidate was increased by 0.15. (Our analyses of NES respondents’ candidate evaluations suggest that this is a realistic range of scenarios to explore.)

The results reported in Table 4 support the argument that elections featuring candidates with attractive personal qualities motivate higher turnout, and do so because the respondents’ predicted aggregate probabilities of being alienated drop sharply. There is little comparable effect for indifference. In toto, these simulations suggest that the magnitude of the effects of candidate images upon aggregate turnout is on the order of 5-8 percent – i.e., that realistic variations in voters’ candidate evaluations can increase or decrease voter turnout from five to eight percentage points.

We next evaluate the extent to which citizens’ decisions to abstain depend on their perceived policy distances from the candidates, as spatial modeling research assumes. For illustrative purposes, Figure 1 plots the observed proportions of respondents who abstained in the 1988 NES as a function of liberal (1) to conservative (7) self-placement, stratified by partisanship. We also plot the abstention probabilities projected by the model, and the mean perceived liberal-conservative locations of the candidates, Bush and Dukakis. The figures’ two most striking features are that observed and predicted probabilities for abstention match closely even when disaggregated by partisanship, and that both Democratic and Republican identifiers are least likely to

---

12 The mean (scaled) character ratings that respondents assigned to the candidates in the 1980-84-88-92-96-2000 NES studies ranged from a low of .04 (for Carter in 1980) to a high of .41 (for Clinton in 1996), a difference of .37. This suggests that the range of scenarios we investigate with respect to respondents’ candidate ratings provides a reasonable estimate of the candidates’ impacts on turnout in presidential elections.

13 There are only five Republican partisans located at 1 on the liberal-conservative scale, so that the downturn in the empirical plot in Figure 1 at the extreme left is not statistically significant. All other plotted points represent at least 15 respondents.
abstain when their ideological self-placement is close to the mean perceived location of their party’s candidate.

Figure 2 plots the model-projected abstention probabilities of respondents stratified by whether their abstention principally owes to alienation, indifference or both of these foundations. These show that citizens’ tendencies to abstain because of alienation – but not indifference – are strongly related to perceived policy distance from the candidates. Among Republican partisans (Figure 2A), the propensity to be alienated rises from approximately 30 percent for those who share Bush’s ideological placement (i.e., those who self-place at 5 or 6 on the liberal-conservative scale) to over 60 percent for more liberal Republicans who are spatially distant from Bush.\(^\text{14}\) The figure also shows that conservative Republicans who prefer Bush to Dukakis on both partisan and ideological grounds are far less likely to be indifferent than are liberal Republicans. The patterns for Democratic partisans (Figure 2B) mirror those of the Republicans: Democrats are significantly less likely to be alienated when they share Dukakis’s ideology, and projected indifference is lowest among liberal Democrats who prefer their party’s candidate on both partisan and ideological grounds. Identical computations using the 1980 and 1984 data yielded the same substantive conclusions, providing evidence that citizens’ tendencies to abstain are significantly related to their perceived policy distances from the candidates.

\[\text{[Figure 2A and 2B about here]}\]

Finally, we ask whether realistic changes in citizens’ perceptions of the candidates’ policy positions would have significantly changed aggregate voter turnout. We simulated the effect of shifting NES respondents’ placements of candidates’ ideological and policy positions along

\(^{14}\)To see this, note that the proportion of alienated Republicans equals the proportion who are computed to abstain due to alienation only (the bottom strata of respondents pictured in Figure 2A) plus those who are computed to abstain due to being both alienated and indifferent (the top strata of respondents pictured in Figure 2A).
various dimensions. We explored four scenarios: a “convergent policy” scenario, in which respondents’ placements of the candidates’ positions along all of the policy and ideology scales were shifted 0.5 units closer to the mean voter position; an “actual policies” scenario, in which the candidates were fixed at their actual (perceived) positions; a “moderate polarization” scenario in which both candidates’ perceived positions along the policy and ideology scales were shifted 0.5 units further away from the mean voter position; an “extreme polarization” scenario in which both candidates’ perceived positions were shifted 1.0 policy unit further away from the mean voter position. Under the “extreme polarization” scenario, for instance, Dukakis’s ideological position was shifted leftward to the position 2.10 along the 1-7 Liberal-Conservative scale (Dukakis’s actual (mean perceived) position was 3.10 on the scale), while Bush’s ideological position was shifted rightward from 5.23 (his mean perceived position) to 6.23. For each scenario we computed the expected proportion of the electorate that was indifferent, the expected proportion of alienated voters, and the expected aggregate turnout rate.

Table 5 reports these simulations for 1988, although comparable analyses using the 1980 and 1984 data produced identical substantive conclusions. These suggest that changes in the candidates’ perceived policy positions would not have significantly affected aggregate voter turnout. The simulations show that moderate degrees of either policy convergence or divergence would change the expected aggregate abstention rate by less than 1 percent compared with the abstention rate for the actual candidate configuration. Furthermore, under the extreme policy polarization scenario the expected abstention rate would increase by a modest 2.4 percent.

The above conclusions appear counterintuitive given that our previous results showed that abstention is positively related to perceived policy distance from the candidates. The expla-
nation is that in this case the candidates’ perceived policy shifts are of similar magnitude, but in opposite directions. Consequently, the net effects are minimal. To see this, consider the turnout effects associated with two polar-opposed candidate configurations, the convergent policy scenario (column 1) and the extremely polarized scenario (column 4). Compared with the convergent scenario, the stark policy choices perceived by voters in the extreme polarization scenario decrease the expected amount of aggregate voter indifference by 4.6 percentage points while increasing projected aggregate alienation by 7.5 points. This is because a large majority of NES respondents hold moderate positions that render extreme candidate positioning unattractive. We conclude that realistic changes in citizens’ perceptions of a candidates’ policy positions, if balanced by a comparable change by the other candidate, will not significantly affect aggregate voter turnout.

4. Conclusion

Although the distinction between abstention due to alienation and abstention due to indifference is commonplace in the spatial modeling literature, we provide the first explicit attempt to model these micro-foundations as a decision calculus and to distinguish empirically between these motivations using a unified model of turnout and voter choice. Our objective in this paper is to explore two questions concerning turnout and voting behavior in contemporary presidential elections: What are the relative contributions of alienation and indifference to depressing turnout in these elections, and, how does distinguishing between alienation-based and indifference-based abstention improve our ability to understand and forecast important political outcomes?

With respect to the first question, both alienation and indifference appeared to contribute substantially to depressing turnout in the 1980-84-88 presidential elections, which suggests that
theories and models of turnout should incorporate both of these sources of abstention in analyses of American presidential elections.

With respect to the second question, we conclude that distinguishing between alienation-based and indifference-based abstention provides micro-foundation evidence that corroborates the argument that there is little partisan direction associated with changes in turnout. In addition, the distinction between indifference and alienation is critical for understanding how presidential candidates’ images affect aggregate turnout, and for understanding the turnout effects associated with the candidates’ policy platforms. With indifference-based abstention, presidential elections featuring attractive candidates do not motivate additional voters to participate. But with alienation-based abstention, attractive candidates should attract additional voters to the polls. Given our finding that alienation and indifference are of approximately equal importance in presidential elections, we conclude that realistic variations in the candidates’ images could alter turnout by between four and seven percentage points.

Finally, we also find that the unified indifference-alienation model illuminates the impact of voters’ policy motivations on turnout. On one hand, we conclude that abstention is largely policy-based – i.e. citizens’ individual-level tendencies to be alienated and indifferent are strongly affected by their evaluations of the candidates’ policies. This supports the perspective advanced in spatial modeling studies and suggests that such studies may be relevant to candidate strategies in real-world elections. On the other hand, we conclude that aggregate turnout does not depend significantly on citizens’ perceptions of the candidates’ policy platforms. This is because candidate configurations that leave many voters indifferent over policies (when candidates are perceived as proposing similar, centrist policies, for instance) provoke little policy alienation, whereas candidate configurations that leave few voters indifferent over policies (such as elec-
tions involving a liberal ideologue versus a conservative ideologue) provoke widespread alienation. Hence we do not find support for the oft-expressed opinion that tweedledee-tweedledum politics (i.e., convergent candidate platforms) depresses turnout. Instead, our findings suggest that tweedledee-tweedledum candidates will cause more voters to be indifferent, but fewer voters to be alienated, thereby leaving aggregate-level turnout largely unchanged.

To date, the empirical literature on turnout has largely focused on answering the question of whether citizens will choose to vote or abstain. We have shown that distinguishing why voters abstain, that is, whether abstention is driven by alienation or by indifference, is also important for understanding presidential elections.
References


Munger, Michael C. and Gary Cox.


Table 1. Conditional Logit Equations for the Unified Indifference-Alienation Model, 1980-84-88 Presidential Elections

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Candidate Parameters (1)</th>
<th>Indifference Threshold (2)</th>
<th>Alienation Threshold (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988 N=1389</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black (Dem.)</td>
<td>.11* (.56)</td>
<td>-.09 (.21)</td>
<td>.91 (.52)</td>
</tr>
<tr>
<td>Political efficacy</td>
<td>-2.89** (.65)</td>
<td>1.05* (.46)</td>
<td>1.21* (.46)</td>
</tr>
<tr>
<td>Voted in 1984</td>
<td>-1.65** (.24)</td>
<td>-.07 (.06)</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>.01 (.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close election</td>
<td>-.15 (.15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log-Likelihood</td>
<td>-929.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984 N=1547</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black (Dem.)</td>
<td>.09 (.38)</td>
<td>-.31 (.45)</td>
<td>.70 (.51)</td>
</tr>
<tr>
<td>Political efficacy</td>
<td>-3.28** (.94)</td>
<td>1.12** (.63)</td>
<td></td>
</tr>
<tr>
<td>Voted in 1980</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>-.06 (.03)</td>
<td>-.32** (.05)</td>
<td></td>
</tr>
<tr>
<td>Close election</td>
<td>.13 (.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log-Likelihood</td>
<td>-1183.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980 N=998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black (Dem.)</td>
<td>2.88* (1.14)</td>
<td>-2.62 (1.27)</td>
<td>2.94* (1.23)</td>
</tr>
<tr>
<td>Political efficacy</td>
<td>-.74 (.91)</td>
<td>-1.85 (1.05)</td>
<td></td>
</tr>
<tr>
<td>Voted in 1976</td>
<td>-1.15** (.24)</td>
<td>-1.05* (.50)</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>.10 (.08)</td>
<td>.00 (.10)</td>
<td></td>
</tr>
<tr>
<td>Close election</td>
<td>-.23 (.17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log-Likelihood</td>
<td>-735.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: The voting specifications used to estimate these parameters are given by the utilities and thresholds in Section 2. As noted in the text, the parameters for ideological distance, policy distance, party identification, and candidate character are constrained to have equal values with respect to respondents' utilities for the Democratic and the Republican candidates. One asterisk signifies statistical significance at the .05 level; two asterisks signify statistical significance at the .01 level. Standard errors are in parentheses.
Table 2. Rates of Abstention, Indifference, and Alienation in the 1980-88 Presidential Elections

A. Relative Impact of Indifference and Alienation on Aggregate Abstention

<table>
<thead>
<tr>
<th>Party Identification</th>
<th>Alienated (1)</th>
<th>Indifferent (2)</th>
<th>Alienated and/or Indifferent (3)</th>
<th>Projected Abstention Rate (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Democrats</td>
<td>37.3</td>
<td>31.0</td>
<td>51.0</td>
<td></td>
</tr>
<tr>
<td>1988 Republicans</td>
<td>35.7 (38.9)</td>
<td>28.4 (33.7)</td>
<td>48.8 (53.1)</td>
<td></td>
</tr>
<tr>
<td>Independents</td>
<td>31.5 (34.3)</td>
<td>25.5 (30.8)</td>
<td>44.0 (48.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>57.7</td>
<td>51.6</td>
<td>72.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(54.9)</td>
<td>(60.4)</td>
<td>(68.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(57.8)</td>
<td></td>
<td>(75.8)</td>
<td></td>
</tr>
<tr>
<td>Democrats</td>
<td>34.7</td>
<td>28.8</td>
<td>50.5</td>
<td></td>
</tr>
<tr>
<td>1984 Republicans</td>
<td>33.6 (35.8)</td>
<td>27.1 (30.6)</td>
<td>49.2 (51.8)</td>
<td></td>
</tr>
<tr>
<td>Independents</td>
<td>23.8 (25.9)</td>
<td>18.7 (21.9)</td>
<td>36.1 (39.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50.9</td>
<td>36.7</td>
<td>64.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(48.0)</td>
<td>(53.8)</td>
<td>(61.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(53.8)</td>
<td></td>
<td>(66.7)</td>
<td></td>
</tr>
<tr>
<td>Democrats</td>
<td>36.2</td>
<td>32.1</td>
<td>50.6</td>
<td></td>
</tr>
<tr>
<td>1980 Republicans</td>
<td>34.6 (37.8)</td>
<td>29.8 (34.4)</td>
<td>48.8 (52.5)</td>
<td></td>
</tr>
<tr>
<td>Independents</td>
<td>26.9</td>
<td>24.4</td>
<td>39.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(25.2)</td>
<td>(28.6)</td>
<td>(37.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50.0</td>
<td>49.6</td>
<td>66.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(45.9)</td>
<td>(54.2)</td>
<td>(62.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(55.3)</td>
<td></td>
<td>(70.5)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The projected proportions of NES respondents who were alienated and indifferent were calculated using the parameter estimates for the unified IA model reported in Table 1 and the probability formulas in note 10. The projected abstention rate is the proportion of respondents predicted to abstain for any combination of alienation and/or indifference. The 95 percent confidence interval for each estimated proportion is in parentheses.


### Table 3. Projected Election Outcomes for Hypothetical Increases in Voter Turnout, 1980-84-88 Presidential Elections

<table>
<thead>
<tr>
<th>Year</th>
<th>Bush vote</th>
<th>Dukakis vote</th>
<th>Turnout rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>52.8</td>
<td>47.2</td>
<td>49.2</td>
</tr>
<tr>
<td></td>
<td>52.3</td>
<td>47.7</td>
<td>62.8</td>
</tr>
<tr>
<td></td>
<td>51.8</td>
<td>48.2</td>
<td>68.3</td>
</tr>
<tr>
<td></td>
<td>50.8</td>
<td>49.2</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Turnout rate</th>
<th>Democrat’s Projected Vote Gain Under Full Turnout</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.2</td>
<td>+2.00</td>
</tr>
<tr>
<td>(4.90)</td>
<td></td>
</tr>
<tr>
<td>62.8</td>
<td>-0.60</td>
</tr>
<tr>
<td>(4.90)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Reagan vote</th>
<th>Mondale vote</th>
<th>Turnout rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984</td>
<td>57.8</td>
<td>42.2</td>
<td>53.9</td>
</tr>
<tr>
<td></td>
<td>56.2</td>
<td>43.8</td>
<td>68.1</td>
</tr>
<tr>
<td></td>
<td>55.3</td>
<td>44.7</td>
<td>74.1</td>
</tr>
<tr>
<td></td>
<td>53.6</td>
<td>46.4</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Turnout rate</th>
<th>Democrat’s Projected Vote Gain Under Full Turnout</th>
</tr>
</thead>
<tbody>
<tr>
<td>53.9</td>
<td>+4.20</td>
</tr>
<tr>
<td>(6.40)</td>
<td></td>
</tr>
<tr>
<td>68.1</td>
<td>(2.20)</td>
</tr>
<tr>
<td>(6.40)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Reagan vote</th>
<th>Carter vote</th>
<th>Turnout rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>54.9</td>
<td>45.1</td>
<td>51.9</td>
</tr>
<tr>
<td></td>
<td>54.3</td>
<td>45.7</td>
<td>65.8</td>
</tr>
<tr>
<td></td>
<td>52.5</td>
<td>45.7</td>
<td>68.9</td>
</tr>
<tr>
<td></td>
<td>52.3</td>
<td>47.7</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Turnout rate</th>
<th>Democrat’s Projected Vote Gain Under Full Turnout</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.9</td>
<td>+2.60</td>
</tr>
<tr>
<td>(5.60)</td>
<td></td>
</tr>
<tr>
<td>65.8</td>
<td>(-0.01)</td>
</tr>
<tr>
<td>(5.60)</td>
<td></td>
</tr>
</tbody>
</table>

The candidates’ votes in columns 1-4 represent their projected proportions of the two-candidate vote. These projected votes, as well as the projected turnout rates reported in columns 1-4, were calculated using the parameter estimates for the unified IA model reported in Table 1, and the probability formulas in note 10. The projected vote gains under full turnout scenario, reported in column 5, represents the difference between the Democratic candidate’s expected vote share under full turnout (column 4) and his expected vote when voters may abstain due to either alienation or indifference (column 1). The approximate 95 percent confidence intervals for these differences are in parentheses, and the arithmetic formulas for the confidence intervals are available from the authors on request.
Table 4. The Projected Abstention Rates for Changes in NES Respondents’ Evaluations of the Candidates’ Characters

<table>
<thead>
<tr>
<th>Proportion of NES Respondents Projected to Be…</th>
<th>Unpopular Candidate Scenario¹</th>
<th>Neutral Scenario¹</th>
<th>Popular Candidate Scenario¹</th>
<th>Change in Abstention Rate between the Popular and Unpopular Candidate Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alienated</td>
<td>41.0</td>
<td>37.2</td>
<td>33.8</td>
<td>7.4 (7.3  7.5).</td>
</tr>
<tr>
<td>Alienated and/or indifferent (overall abstention rate)</td>
<td>53.2</td>
<td>50.8</td>
<td>48.5</td>
<td>4.6 (4.5  4.9).</td>
</tr>
<tr>
<td>Alienated</td>
<td>36.2</td>
<td>31.9</td>
<td>27.9</td>
<td>8.4 (8.2  8.5).</td>
</tr>
<tr>
<td>Alienated and/or indifferent (overall abstention rate)</td>
<td>49.1</td>
<td>46.1</td>
<td>43.4</td>
<td>5.7 (5.5  5.8).</td>
</tr>
<tr>
<td>Alienated</td>
<td>40.6</td>
<td>34.2</td>
<td>28.3</td>
<td>12.4 (12.1 12.6).</td>
</tr>
<tr>
<td>Alienated and/or indifferent (overall abstention rate)</td>
<td>52.1</td>
<td>48.1</td>
<td>44.6</td>
<td>7.5 (7.2  7.7).</td>
</tr>
</tbody>
</table>

¹ For the unpopular candidate scenario, each respondent’s score on each candidate character variable is reduced by .15; for the popular candidate scenario, each is increased by .15; in the neutral scenario, each variable is set at its actual value. The projected abstention rates are calculated using the parameter estimates for the unified IA model reported in Table 1 and the probability formulas in note 10. The 95 percent confidence intervals are in parentheses.
Table 5. Alienation-Motivated Abstention, Indifference-Motivated Abstention, and Overall Turnout: 1988 Election

<table>
<thead>
<tr>
<th>Proportion of NES Respondents Projected to be…</th>
<th>Convergent Policy Scenario(^1) (1)</th>
<th>Candidates Fixed at Their Actual Policies (2)</th>
<th>Moderate Policy Polarization Scenario(^1) (3)</th>
<th>Extreme Policy Polarization Scenario(^1) (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alienated</td>
<td>36.7</td>
<td>36.8</td>
<td>39.6</td>
<td>44.1</td>
</tr>
<tr>
<td>Indifferent</td>
<td>33.0</td>
<td>31.6</td>
<td>30.3</td>
<td>28.9</td>
</tr>
<tr>
<td>Alienated and/or indifferent (aggregate abstention rate)</td>
<td>51.3</td>
<td>50.5</td>
<td>51.4</td>
<td>53.6</td>
</tr>
<tr>
<td>Change in aggregate abstention rate, compared to the actual candidate configuration</td>
<td>+0.6 (0.4 0.7)</td>
<td>--</td>
<td>+0.7 (0.5 0.8)</td>
<td>+2.8 (2.5 3.2)</td>
</tr>
</tbody>
</table>

\(^1\) For the convergent policy scenario, each candidate’s perceived position was shifted 0.5 policy units closer to the mean respondent self-placement along each of the 7-point ideology and policy scales included in the unified IA specification. For the moderate and extreme policy polarization scenarios, the candidates’ perceived positions were shifted by 0.5 and 1.0 units further away from the mean candidate placement, respectively. The projected abstention rates are calculated using the parameter estimates for the unified IA model reported in Table 1 and the probability formulas in note 10.
Figure 1. Proportion Abstaining in the 1988 American NES, by Party and by Location on Liberal-Conservative (L-C) Scale.

A. Republican Partisans

B. Democratic Partisans

Note: The liberal-conservative positions for Bush and Dukakis represent the mean placements assigned to these candidates by the respondents in the 1988 ANES.
Figure 2. Model-Projected Abstention Rates in the 1988 American NES by Type of Abstention

A. Republican Partisans

B. Democratic Partisans