Lecture 30: Microbial Diseases of the Nervous System

Unlike the skin, the central nervous system and peripheral nervous system have no native flora.
- Surrounding the brain and spinal cord are a set of continuous membranes, the meninges; cerebrospinal fluid circulates between the two innermost meninges (Tortora et al., Figure 22.2).
- An interesting feature of the central nervous system, with relevance to infection, is the blood-brain barrier:
 - Tissues of the central nervous system are served by specialized capillaries that are more selective than most capillaries in allowing passage of molecules.
 - As a result, many antimicrobial drugs are unable to reach the tissues of the central nervous system, complicating treatment.
 - On the other hand, the blood-brain barrier may serve as a nonspecific defense against infection.
- Microorganisms may infect the central nervous system:
 - Trauma can interrupt the normal barriers, and some microorganisms move along peripheral nerves.
 - The most common route for infection of the central nervous system is probably through lymphatic vessels.
- Infection of the meninges is called meningitis, while infection of the brain itself is called encephalitis.

Bacterial meningitis can be caused by a variety of bacteria, especially trauma allows introduction of normal flora or environmental material to the central nervous system; however, greater than 80% of cases are caused by three species (Tortora et al. Table 22.1):
- Neisseria meningitidis, the agent of meningococcal meningitis, is found as part of the respiratory tract flora of some persons.
 - Throat infection of a susceptible host can lead to bacteremia, then to invasion of the cerebrospinal fluid.
 - N. meningitidis resists killing by phagocytes, which may aid its invasion of the central nervous system.
 - Pathogenesis of meningococcal meningitis is related to the effects of N. meningitidis endotoxin.
 - In the past, outbreaks of meningococcal meningitis were common in military training facilities.
 - Concern with outbreaks at colleges has led to more widespread use of a vaccine for meningococcal meningitis.
- Haemophilus influenzae was once an important agent of bacterial meningitis in young children.
 - The genus name of H. influenzae comes from its requirement for growth factors in blood; the species name comes from an erroneous assignment of H. influenzae as the agent of influenza (which is a viral infection).
 - The type b strain of H. influenzae is responsible for most cases of H. influenzae meningitis.
 - A vaccine, prepared from capsular antigens of H. influenzae type b, is currently recommended for children at the age of two months.
- Streptococcus pneumoniae, the most important agent of bacterial pneumonia, is also a significant cause of bacterial meningitis.
 - Although most cases of pneumococcal meningitis occur in infants, compromised elderly patients are also susceptible.
 - Mortality due to pneumococcal meningitis is relatively high for a bacterial infection.

Listeria monocytogenes, associated with a variety of animals, can cause meningitis in humans:
- When acquired, the usual course of L. monocytogenes infection is a mild gastrointestinal infection - listeriosis.
- *L. monocytogenes* does have affinity for the central nervous system, especially in immunosuppressed hosts and in pregnant women
 - When it infects a pregnant woman, growth of *L. monocytogenes* on the placenta leads to a high rate of miscarriage and stillbirth
 - *L. monocytogenes* is the leading cause of meningitis in immunosuppressed cancer patients
- *L. monocytogenes* is usually acquired from contaminated food products, and will grow at refrigerator temperatures

Tetanus and *botulism* are diseases resulting from the action of exotoxins produced by bacteria belonging to the genus *Clostridium*
- *Clostridium tetani* is especially common in soils contaminated with animal feces
 - *C. tetani* is capable of growth in deep puncture wounds, where anaerobic conditions can develop
 - The exotoxin produced by *C. tetani*, *tetanospasmin*, is an extremely potent neurotoxin that blocks the signals that normally signal muscle relaxation, leading to spastic paralysis
 - Tetanus can usually be prevented by administration of toxoid immediately after potential exposure; the bacteria grow slowly enough to allow an adequate immune response to tetanospasmin
 - *Tetanus immune globulin (TIG)* can also be administered; this is an example of artificially acquired passive immunity
- *Clostridium botulinum*, the agent of botulism, is actually unable to grow in tissues of adult humans
 - Most cases of botulism arise from ingestion of *botulin toxin* produced by *C. botulinum* that has grown in inadequately sterilized foods
 - Several types of botulin toxin are produced by different strains of *C. botulinum*
 - *Infant botulism* is caused by growth of *C. botulinum* in the gastrointestinal tract of infants, whose normal gastrointestinal flora is different from that of adults; 30% of cases of infant botulism have been associated with ingestion of *C. botulinum* endospores in honey

Mycobacterium leprae, the bacterial agent of leprosy or *Hansen’s disease*, multiplies in the peripheral nervous system
- *M. leprae* grows very slowly and has never been grown on artificial media; research on its biology is conducted in armadillos
- The lesions characteristic of leprosy, like those of tuberculosis (caused by another *Mycobacterium* species, *M. tuberculosis*), are associated with cell-mediated immune responses to intracellular growth of the pathogen
- Despite its reputation, leprosy is not especially contagious
- Although difficult to treat, leprosy does respond to long-term antibiotic therapy
- There is some hope that leprosy, a disease only of humans, might be eradicated

The viral infection *poliomyelitis* is best known from its most severe manifestation, paralysis
- Actually, before polio vaccines were available, infection with *poliovirus* was rather common
- Poliovirus is acquired via the fecal-oral route
 - The majority of infections are limited to the gastrointestinal tract
 - Even when the infection becomes systemic, it only enters the central nervous system in 1-2% of infections
- Pathogenesis of the paralytic form of polio results from destruction of motor nerve cells in the upper spinal cord
- The availability of vaccines has markedly reduced the incidence of poliomyelitis in the United States (Tortora et al., Figure 22.10), and worldwide eradication is underway

Rabies, though rare in humans, is greatly feared since once an infection is established, it is invariably fatal.
- **Rabies virus** has a characteristic "bullet" shape and is acquired through broken skin from the saliva of an infected animal
- The virus can cross intact mucous membranes, and has been transmitted by mechanisms other than animal bites
- Fortunately, rabies virus exhibits a long incubation period, and an adequate level of artificially acquired active immunity can be produced before the virus invades the nervous system
 - The original treatment, developed by Pasteur (perhaps his greatest claim to fame), used dessicated spinal cords from rabbits infected with rabies virus
 - Today, treatment involves use of viral material that has been grown on human cells in culture, then inactivated

Arthropod-borne encephalitis describes a number of diseases caused by related viruses: the **arboviruses**
- All of these viruses are transmitted between mammalian hosts by mosquitoes
- The animal hosts for the arboviruses vary; for some, the main reservoir is birds
- Arthropod-borne encephalitis infections are seasonal, following the abundance of the mosquito vectors
- The most serious (and one of the rarest) form of arthropod-borne encephalitis in the United is **Eastern equine encephalitis (EEE)**; the "equine" means that horses are also susceptible, not that they are the main reservoir
- **West Nile encephalitis**, which recently entered the United States, is another arboviral infection

Additional diseases of the central nervous system
- **Cryptococcosis**, caused by the fungus *Cryptococcus neoformans*, may result in chronic meningitis in immunocompromised persons
- **Trypanosomiasis**, "African sleeping sickness", is a serious vector-borne infection in central and eastern Africa
 - The agent of trypanosomiasis, *Trypanosoma brucei*, is a flagellate protozoan
 - Immune control of trypanosomiasis is complicated by the phenomenon of "antigenic variation" (Tortora et al. Figure 22.15)
- **Naegleria meningoencephalitis**, caused by the protozoan *Naegleria fowleri*, is a rapidly fatal brain infection acquired from water
- The importance of *prions* in neurological disease is becoming more appreciated
 - Most human prion diseases are inherited or of unknown etiology; the most common (neverthless rare) of these is **Creutzfeldt-Jakob disease (CJD)**
 - There is current concern that new variant CJD (nvCJD) might be acquired by ingestion of beef carrying *bovine spongiform encephalopathy (BSE)*